: A >
Al for better brains %g &

W1todzistaw Duch

Neurocognitive Laboratory,
Center for Modern Interdisciplinary Technologies,
Dept. of Informatics, Faculty of Physics, Astronomy & Informatics,

Nicolaus Copernicus University
Google: Wlodek Duch

SISSA, Nov. 12-13,2019


http://www.google.com/search?q=Wlodek+Duch
http://www.google.com/search?q=Wlodek+Duch
http://www.google.com/search?q=Wlodek+Duch

On the threshold of a dream ... (50 y!)

Some ideas on how to
optimize and repair
human brains

e, with Al.

Duch W. (2012) Mind-Brain Relations, Geometric Perspective and
Neurophenomenology, American Phil. Assoc. Newsletter 12(1), 1-7.
Duch, W. (2019) Mind as a shadow of neurodynamics. Physics of Life Reviews



https://www.journals.elsevier.com/physics-in-medicine/call-for-papers/special-issue-physics-of-mind
https://www.journals.elsevier.com/physics-in-medicine/call-for-papers/special-issue-physics-of-mind
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I’'ve worked on many topics: computational intelligence algorithms, meta-learning
in Cl, neural networks, data understanding, NLP, similarity based methods,

visualization, computational creativity, ASD, neuroinformatics, computational
physics/quantum chemistry, philosophy of mind.

www.is.umk.pl/~duch/cv/WD-topics.html



http://www.is.umk.pl/~duch/cv/WD-topics.html

Global Brain Initiatives,
or why is this so important?



Join the IEEE
Brain Community

JOIN FREE

The mission of IEEE Brain is to facilitate cross-disciplinary collaboration and
coordination to advance research, standardization and development of
technologies in neuroscience to help improve the human condition.

Al-neuroscience convergence! 20 IEEE Societies are involved, including:

IEEE Computational Intelligence Society; Computer Society; Consumer
Electronics Society; Digital Senses Initiative; Robotics and Automation Society;
Sensors Council; Signal Processing Society; Society on Social Implications of
Technology; Systems, Man, and Cybernetics Society, International Neuroethics
Society, and a few other societies.

Most these societies are also involved in artificial intelligence.

Satya Nadella (CEO, Microsoft): examples of technology that can be applied to
empower more than one billion people with disabilities around the world.



https://lnkd.in/g-_CGTw
https://lnkd.in/g-_CGTw
https://lnkd.in/g-_CGTw

International Brain Initiatives

Canadian Brain
Research Strategy

European L!nion )
Human Brain Project Korea Brain Inltlatwe\

U.S. BRAIN Initiative l
China Brain Pro;ect]

| Japan Brain/MINDS

Australian Brain Initiative




Involvement in large EU Initiatives
2005, Beyond the Horizon TG 5 group: Beyond the HOI’iZOﬂ

Intelligent and Cognitive Systems

Anticipating Future and Emerging
Information Society Technologies

* Recommended work on mind-body
co-evolution, materials and growth
technologies, morphological computation, emerging behavior.

This was adopted in FP7, | wrote votum separatum, recommending work on
artificial minds, NLP, bots and avatars, creativity, cognitive architectures.

2011, FET Work Programme, Human Computer Confluence panel.
Merging Minds and Machines: Integrating Al with current Brain Research and
future Neurotechnologies.

Two FET Flagship projects:
* 2010, The Mind and Brain Model Project.

* 2018 Future FET Flagship: Sapiens5.0, The science and technology for a
22"-century humanity.



Costs of brain diseases

Big ICT companies: Amazon, Apple, Google, Microsoft + Chinese giants
Tencent, Baidu, and Alibaba, entering Al in health care (3 TS industry).

Brain research is most important: Al <> Neuroscience <> Neuropsychiatry.

Gustavsson et al. (2011). Cost of disorders of the brain in Europe 2010.
European Neuropsychopharmacology, 21(10), 718-779.

179 million, or 1/3 of all European citizens, had at least one brain disorder.
45% of the total annual health budget of Europe!

Total cost of brain disorders in EU estimated in 2010: 798 billion €/year.

China: >20% of population (~*250 mln) suffering from some mental disorder.

European Brain Council (EBC) reports (2010; 2014).
Consensus Statement on European Brain Research (2015) includes a chapter
on Computational Neuroscience, data repositories and analytics.



BRAIN

INITIATIVE

BRAIN Funding

Advance Opportunities
/\ Neurotechnologies
L\Kﬁ 17! | Accelerate the development and Support multi-disciplinary teams and
\_\ [ — application of new neurotechnologies. stimulate research to rapidly enhance current
11 neuroscience fechnologies and catalyze
o
innovative scientific breakthroughs.

Human Brain Project, EU Flagship, and Obama BRAIN Initiative (2013):
Brain Research through Advancing Innovative Neurotechnologies.

“Develop new technologies to explore how the brain’s cells and circuits
interact at the speed of thought, ultimately uncovering the complex links
between brain function and behavior. Explore how the brain records,
processes, uses, stores, and retrieves vast quantities of information. Help
bring safe and effective products to patients and consumers.”

Since 2013 numerous exciting developments in neurotechnology and our
understanding of the brain have been made by scientists across the globe.



Workshop on Brain-Machine Intefface Systems
Global Current and Emerging Brain Initiative Meeting

Brain Hackathon ]

Presic
\come from IEEE P!
o James A. Jefferies

/

Systems, Man, and Cybernetics Society

This workshop was part of the Brain-Machines Interface Workshop and
SMC2018 conference, organized by Mike Smiths (UC Berkeley).

Special meeting of Global Current and Emerging Brain Initiative leaders was
attended by IEEE President, James Jefferies, President-elect Toshio Fukuda,
and representatives from Australia to USA (NSF and NIH),

IEEE Brain Initiative, International Neuroethics Society, industry,

and other stakeholders.



Neuroscience => Al

Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M. (2017).
Neuroscience-Inspired Artificial Intelligence. Neuron, 95(2), 245-258.

Affiliations: Google DeepMind, Gatsby, ICN, UCL, Oxford.
Bengio, Y. (2017). The Consciousness Prior. ArXiv:1709.08568.
Amoset al. (2018). Learning Awareness Models. ICRL, ArXiv:1804.06318.

Al Systems inspired by Neural Models of Behavior:

(A) Visual attention, foveal locations for multiresolution “retinal”
representation, prediction of next location to attend to.

(B) Complementary learning systems and episodic control: fast learning
hippocampal system and parametric slow-learning neocortical system.
(C) Models of working memory and the Neural Turing Machine.

(D) Neurobiological models of synaptic consolidation.

SANO, new Centre for Individualized Computational Medicine in Krakéw (EU
Team project, with Sheffield Uni, Fraunhofer Society, Research Centre Juelich.


https://sano.science/

BICA, Brain-Inspired Cognitive Architecture

Understanding the brain
from engineering perspective
means to build a model of
the brain showing similar ,{f’r{( "

functions.

Cognitive informatics, (5 >

Neurocognitive Informatics.

BICA = Brain Inspired

Cognitive Architecture. ,
HIPFOCAMPUS

Review: Duch, Oentaryo,
Pasquier,

Cognitive architectures: wher
e do we go from here

? 2008



https://fizyka.umk.pl/publications/kmk/08-AGI.html
https://fizyka.umk.pl/publications/kmk/08-AGI.html

Neuromorphic wall

1024 TN neuromorphic chips, or 1B neurons and 256B synapses!
Complexity ~ horse brain, 1/4 gorilla, 1/6 chimpanzee.




Optimizing brains Neurocognitive
technologies



BCl: wire your brain ...

Non-invasive, partially invasive and invasive signals carry progressively more
information, but are also harder to implement. EEG is still the king!

Supervised

Classifiers
(LDA, SVM)

I/0O Models for

Frequency Regression

Analysis BN Decision
(Continuous) Generative

Rate Coding

(Semi- Semi-Supervised

Continuous) Reinforcement
Learning

Spikes : Trajectory
(Point Unsupervised
Process) Correlation
Metrics

State
Machines




Brain-Computer-Brain Interfaces

Bidirectional BCl o : g :
e nm 271\ — Controller
brainstate stimulation

F Y

Wireless data ‘
& power H

Sﬁmmatﬁf Sense & Actuate

Recording
‘amplifier

Record m ,"F Stimulate brain for

brain : -;—Ep; sensory feedback
signals ; -

Neurofeedback + neuromodulation. Closed loop system with brain reading and
stimulation for self-regulation. Sensory signals may com from Virtual Reality.




Brain stimulation

Noninvasive Brain
Stimulation

Electrical
Stimulation

Magnetic
Stimulation

[ Transcranial H Transcranial ‘

Single i : Transcranial Transcranial Transcranial
pulse Pa|r$d gulse Repelitive TMS Pal}erged Direct Current Néf:urﬁitr'??g Rﬂg‘ijs‘:'em
™S M rTM Stimulation ety 4 :
| (DCS) Stimulation Stimulation
(tACS) | (tRMNS)

. _ L - .-_, i - : . - -. b . - i

- [ conico- | . : Continuous || Intermittent |
Intracortical cortical :I:ﬂ;:r T;r"‘ﬁ h""; theta-burst theta-burst Cathadal Anodal
(M1-cnly; (M1+ather ¥ h 51 stimulation stimulaticn ll:C"\' IDCS;

single coil} reqion; hwo “ Hz] gc'm;ﬁ‘.] rITBuj: excitatory

coils) HCitalo

; PHYSIOLOGY 41— NEUROMODULATION %

ECT — Electroconvulsive Therapy i e

VNS — Vagus Nerve Stimulation
Ultrasound, laser ... stimulation.

Complex techniques, but portable
phones are also complex.

Attention? Just activate your cortex,
no effort is needed!




Trenowanie mozgu

Engagement Skills
Trainer (EST) to
procedury treningu
amerykanskich zotnierzy.

(1

Intific Neuro-EST to
technologia
wykorzystujgca analize
EEG i wielokanatowy
stymulator
przezczaszkowy (MtCS)
do transferu
umiejetnosci pomiedzy
mistrzem i uczniem.

e R A e L T R

l‘l ‘



http://www.cubic.com/Global-Defense/Leading-Edge-Solutions/Immersive-Simulation-intific
http://www.cubic.com/Global-Defense/Leading-Edge-Solutions/Immersive-Simulation-intific
http://www.cubic.com/Global-Defense/Leading-Edge-Solutions/Immersive-Simulation-intific
http://www.cubic.com/Global-Defense/Leading-Edge-Solutions/Immersive-Simulation-intific

Epilepsy

About 1% of people and some mammals suffers from epilepsy. Detector and
neurostimulator may discover and stop seizures of drug-resistant epilepsy.

The RNS® System

Responds in real time

1SEC
1




Flow for depression

Complete at-home depression treatment: combining tDCS with behavioral
therapy. 24% could overcome depression, 41% claimed 50% improvement.

https://flowneuroscience.com/

* Medication free. Home treatment.

* Reduces depression with a brain stimulation
headset and free app for behavioural therapy.

* 18 sessions, each 30 min, 6 weeks.

* After 6 weeks, the activity in your frontal lobe
is rebalanced and your depressive symptoms
will have decreased.

* Approved for medical use in the EU and UK.

Early neurocognitive technology, but more
precise analysis of individual brain activity with
tDCS is needed for best adaptation.


https://flowneuroscience.com/
https://flowneuroscience.com/

HD EEG/DCS?

EEG electrodes + DCS.

Reading brain states

=> transforming to common
space

=> duplicating in other brains

Applications:

depression, neuro-plasticity,
new neurofeedback, pain,
psychosomatic disorders!

Multielectrode DCS stimulation
with 256 electrodes induces
changes in the brain increasing
neuroplasticity.

Ex: Phillips Neuro EEG S400.




MemorEM

Transcranial Electromagnetic Treatment (TEMT)
MemorEM head device being worn by a subject.

Position of the eight electromagnetic emitters embedded
between the device’s two-layered head cap.

8 emitters 915 MHz, pulses 4.6 ms, 1.6 W/kg, provide
global TEMT to the cortex and deeper structures.

In AD transgenic mice TEMT prevents and reverses both
cognitive impairment and brain amyloid- (AB)
deposition. TEMT improves cognitive performance in
normal mice. 3 disease-modifying and inter-related
mechanisms of TEMT action:

1) anti-AB aggregation, both intraneuronally and
extracellularly; 2) mitochondrial enhancement; and 3)
increased neuronal activity.

8 mild/moderate AD patients were treated with TEMT,
increased functional connectivity within CC area.

Arendash GW et. al. J. of Alzheimer’s Dis 71 (2019) 57




Synchronize PFC/PC to improve WM

Violante, I.R. et al. Externally induced frontoparietal synchronization modulates
network dynamics and enhances working memory performance. ELife, 6 (2017).

A
Choice Reaction Task N-back Task tACS synchronous - 0

AN
" AW

.T8 tACS desynchronous - 180°
P4

LW
WA

2-back

—
N
1

®

L ]
23hms oot .
=] BUQE}@ %
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Reaction Time (s)
Reaction Time (s)

0° 180° sham 180° sham




BCBIl and memory

N. Ketz et al., A

i fd Post-Sleep Tests
Baseline Test Training Pre-Sleep Test .
ClOSGd-LOOp Slow- P (Morning, Afternoon)

Wave tACS Improves ol _—
Sleep-Dependent = |
Long-Term Memory
Generalization

by Modulating

Respond: 1 mA anodal tDCS at F10, cathode left arm Respond: Respond:
E n d Oge NOuUS Threat, No-Threat Respond: Threat, No-Threat Threat, No-Threat Threat, No-Threat
No Feedback Video feedback on response accuracy No Feedback No Feedback

Oscillations.

J. Neuroscience Repeated

C
I
8 (33) 2018 ——— L

Training

Enhances the
consolidation of
recent experiences
into long-term
memory.




Targeted Neuroplasticity Training

e Neurostimulation device activates peripheral nerve(s)

@ Neuromodulators boost synaptic plasticity

Neuronal connections
are tuned to improve
cognitive skills

DARPA (2017): Enhance learning of a wide range of cognitive skills, with a goal of
reducing the cost and duration of the Defense Department’s extensive training
regimen, while improving outcomes. TNT could accelerate learning and reduce
the time needed to train foreign language specialists, intelligence analysts,
cryptographers, and others.



https://www.darpa.mil/program/targeted-neuroplasticity-training

Memory implants

Ted Berger (USC, Kernel): hippocampal neural prosthetics facilitate human
memory encoding and recall using the patient's own hippocampal
spatiotemporal neural codes. Tests on rats, monkeys and on people gave
memory improvements on about 35% (J. Neural Engineering 15, 2018).

DARPA: Restoring
Active Memory
(RAM), new closed-
loop, non-invasive
systems that leverage Multi-Site
the role of neural Electrode Array
“replay” in the
formation and recall
of memory to help
individuals better
remember specific
episodic events and
learned skills.

Hippocamptis 3 //



https://kernel.co/news/
https://iopscience.iop.org/article/10.1088/1741-2552/aaaed7/meta

Million nanowires in your brain?

DARPA (2016): Neural Engineering System Design (NESD)
Interface that reads impulses of 10° neurons, injecting currents to 10° neurons,
and reading/activating 103 neurons.

DARPA Electrical Prescriptions (ElectRx) project enables “artificial modulation of
peripheral nerves to restore healthy patterns of signaling in these neural circuits.
ElectRx devices and therapeutic systems under development are entering into
clinical studies.”

Neural lace i neural dust project for cortex stimulation.

ultra-thin
- mesh



https://www.darpa.mil/program/electrical-prescriptions
https://www.darpa.mil/program/electrical-prescriptions
https://www.darpa.mil/program/electrical-prescriptions
https://www.darpa.mil/program/electrical-prescriptions

Decoding mental states









[Category traffic light: Passive Viewing




Semantic neuronal space

Words in the semantic
space are grouped by
their similarity. T
Words activate specific . ' 9{2

[Semantic Space]

ext

ROIs, similar words
create similar maps

of brain activity.

Video or audio stimuli,
fMRI 60.000 voxel).
Gallant lab, Berkeley.

violence

’ bodypart ‘
person

visual
number
place

tactile



http://gallantlab.org/huth2016/
http://gallantlab.org/huth2016/
http://gallantlab.org/huth2016/

65 attributes related to
neural processes;

Colors on circle: general
domains.

J.R. Binder et al

Toward a Brain-Based
Componential Semantic

Representation, 2016

More than just
visual objects!

Decompose brain signals
for a given concept into
components coding
these attributes.




Brains <& Minds

Cognitive neuroscience: map S(M)<>S(B), as in BCI.

How do we describe the state of mind?

Verbal description is not sufficient unless words are
represented in a space with dimensions that
measure different aspects of experience.

Stream of mental states, movement of thought
< trajectories in psychological spaces.

Two problems: discretization of continuous
processes for symbolic models,
and lack of good phenomenology — we are

not able to describe our mental states.
Neurodynamics: bioelectrical activity of the

brain, neural activity measured using
EEG, MEG, NIRS-OT, PET, fMRI ...

Duch W (1996) Computational physics of the mind. CPC 97: 136-153



Your brain is taking

Feature extraction

Neural signals
8 network

@ @
Feature summation Reconstructed

Electrocorticographical signals may network speech

be used to train neural network
and control a vocoder.




Listing to thoughts

:?a Speech synthesisdfrom neurakdecoding-of activity Y =

Do obejrzenia  Udostepnij

Synthesize

"Ship building is a most fascinating process."

Patterns of cortical activations in higher order human auditory cortex allows
for neural decoding of speech acoustic parameters, decoder is used to
synthesize speech when a participant silently mimed sentences.

Pasley et al. (2012); G.K. Anumanchipalli, J. Chartier, E.F. Chang, Speech
synthesis from neural decoding of spoken sentences. Nature 24/4/2019



https://www.nature.com/articles/s41586-019-1119-1

Mental images from brain activity

Can we convert activity
of the brain into the
mental images that we
are conscious of?

Try to estimate features
at different layers.

8-layer convolution
network, ~60 min
parameters, feature
vectors from randomly
selected 1000 units in
each layer to simplify
calculations.

Output: 1000 images.




Brain activity <~ Mental image

fMRI activity can be correlated with deep CNN network features;
using these features closest image from large database is selected.

Horikawa, Kamitani, Generic decoding of seen and imagined objects using
hierarchical visual features. Nature Comm. 2017.

t ver ttern
S— Category-average patterns

most similar =I et
category o H“m,

25 Predicted
fMRI activity Decoder H ‘turtle’

‘leopard’
en or imagined k g | ‘skyscraper’
Training data set .
3 BN ‘ﬂ . “\ ‘\ : “J B ¢ in’
Image ﬂ g A F" : = ‘dolphin
P DR RAEE &

Brain activity 'Fi.. o BB R e N ’m i
Feature pattern .l thudi .o.dl il M‘m “J




Neural screen

Features are discovered, 1. We recorded responses to parameterized faces from macaque face

. 3 ] patches
and their combination

remembered as face, but
detailed recognition needs
detailed recording from

neurons — 205 neurons in -
various visual areas used. 2. We found that single cells are tuned to single face axes, and are blind
to changes orthogonal to this axis

L. Chang and D.Y. Tsao, 3B
o H

The code for facial © -
B . .9 B EE
identity in the primate X annAmm
brain”. Cell 2017 8

LL
K.
- aC‘@.

DARPA (2016): put million
nanowires in the brain! 3. We found that an axis model allows precise encoding and decoding of
Use them to read neural neural responses

responses and 10% of
them to activate neurons.

~ G
+ CED







Neuropsychiatric phenomics

2008: The

Consortium for Neuropsychiatric
Phenomics

days
(10°)

centimetres

“... categories, based upon " N -
presenting signs and symptoms, [—- o=t

i > minutes
may not capture fundamental PN

underlying mechanisms of
dysfunction” (Insel et al., 2010).

seconds
(10%

1]
—
=
=
e
=
=
=
[/}

New approach: RDOC NIMH.

Description of organisms at
different levels will help to
answer different types of
qguestions. _

Network level is in the middle and . |t
can be connected to the mental

level via computational models.

microseconds
(1079



http://www.phenomics.ucla.edu/
http://www.phenomics.ucla.edu/
https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/index.shtml

RDoC Matrix for ,,cognitive domain”

Construct/'Subconstruct

Attention
Perception Visual Perception
Auditory Perception
Olfactory/Somatosensory/Multimodal/Perception
Declarative Memory
Language

Cognitive  Goal Selection; Updating, Representation, and
Control Maintenance = Focus 1 of 2 = Goal Selection

zoal Selection; Updating, Representation, and
Maintenance = Focus 2 of 2 = Updating,
Representation, and Maintenance

Response Selection; Inhibition/Suppression =
Focus 1 of 2 = Response Selection

Response Selection; Inhibition/Suppression =
Focus 2 of 2 = Inhibition/Suppression

Performance Monitoring
Working Active Maintenance
Memory Flexible Updating
Limited Capacity

Interference Control

Genes

XXX
Elements
Elements

Elements

Elemants

Elemsnts

Elements

Elements

Elemants

clements
Elements
Elements
Elements

Elements

Molecules

Elements
Elemenis

Elements

Elements

Elemenis

Elements

Elements

Elements
Elements
Elements
Elements

Elements

Cells

Elements
Elements

Elements

Elements

Elements

Elements

Elements

Elements

Elements

Elements

Circuits

Elements
Elemenis

Elements

Elements
Elements

Elements

Elemenis

Elements

Elements

Elements
Elements
Elements
Elemenis

Elements

Physiology Behavior

Elements
Elements

Elements

Elements

Elements

Elements

Elements

Elemants

Elements
Elements
Elements
Elements

Elements

Elements
Elemenis

Elements

Elements

Elements

Elemenis

Elements

Elements

Elements

Self-
Report

Elemenis

Elements

Elements
Elements

Elements

Elemenis

Elements

Elemenis

Elements

Paradigms

Clements
Elements
Elements
clements
clements
Clements

Elements

Elements

Elements

Elemants

clements
Elements
Elements
Elements

Elements



" Research Domain Criteria Initiative

DOMAINS COGNITION

Constructs /.  .ngusge "C0M eDeclar Mem
*Working

. . *Perception *Attention
Psychological (o
constructs are

necessary to talk

about mental states.

Thoughts

Sensorimotor systems Behavior
added in Jan. 2019 -
as sixth brain system.

How are they related
to physical processes?




Human connectome and MRI/fMRI

Node definition (parcelation)

Structural connectivity  Functional connectivity

a®
3
L ]
Ny
e
" 1
et
_"¥
L
5 ¥ i .
\ < Correlation
calculation 3
:
9 -
m
-20
Graph theory Whole-brain graph
0’4 Modularity Binary matrix

Correlation
matrix

Many toolboxes available for such analysis. Bullmore & Sporns (2009)



Network Neuroscience

Communities

(modules) ‘

@® Rich club

Network neuroscience is focused on identifying network structures,

hubs, rich clubs and cores of the network. Hubs connect modules via
long-distance connections. Hubs are also often densely interconnected
forming so called rich club’ or integrated core. New ways of quantification of
various network structures are being developed.

Bullmore and Sporns (2012) The economy of brain network organization.
Nature Reviews Neuroscience, 13(5):336.



Measurement

1> \

'_-.

Example: White matter tracts (via DTI) Adjacency matrix Structural brain network

b Measurement

Activity
0 \

]
o -y ‘> \

Q) iy, & . ./’.'\. .
@) O (@) : \1\ \ L ]

Bt
N

Example: Blood oxygen level (via fMRI) Similarity matrix Functional brain network

Lynn and Bassett (2018) The physics of brain network structure, function,
and control. arXiv:1809.06441.




Posterior cingulate/precuneus
Medial prefrontal
Left lateral parietal ;
Right lateral parietal -63, Default Mode
Left inferior temporal 61,-24, 9}
Right inferior temporal . 24 Network
Medial dorsal thalamus
Right posterior cerebellum
Left posterior cerebellum-
Left frontal eye field
ngrlm_t effrtomait eye fligg ' an'
enor -206, -66, .
Right posterior IPS L ' .66 48 | Dorsal Attention
eft anterior IPS -44, -39, Network
Right anterior IPS .
Left MT
Right MT-
Dorsal medial PFC) L
Left anterior PFC . i
Right anterior PFG b ' 45 oL Executive Control
Left superior parietal -50, -51, Network
Right superior parietal | . -51, 45.
Dorsal anterior cingulate 4 . . 367
Left anterior PFC -35, . gg
Right anterior PFC ; g
. Left insula |- <41, 3, 6 |-Salience Network
Right insula 3, 6
Left lateral parietal . 30
Rrg{hl lateral parietal J , =45, 302
eft motor cortex "o, &L, dﬁg} Sensorimotor
48

Right motor cortex
SMA_ System

Right V

Left A

Right A "f : :g} Auditory System

"E"V%: 7.8 2} visual System

Correlation matrix representing resting-state functional connectivity between
selected brain regions Shows stronger connectivity for 7 large-scale brain
networks: default mode (DM), dorsal attention (DAT), executive control
network (FPN, CON), salience (SAL), sensorimotor (SOM), visual (VSN),
auditory (ASN). Switching DMN < Salience < FPN




Multi-level phenomics

Research Domain Criteria (RDoC)
matrix is based on multi-level
neuropsychiatric phenomics
describing large brain systems
deregulation, but links to behavior
should be analyzed at the network
level, where specialized functions
are implemented. In Al:

M. Minsky, Society of mind (1986)

Decompose brain network
dynamics into meaningful
components of activity related to
various brain functions.

Include influence of genes,
molecules, cells, circuits,
physiology, behavior, self-reports on
network functions.

Mindfulness,

self context
therapies, TMS

Positive affect

dACC/vMPFC

OFc”

Striatum Striatum

Dopamine-
noradrenaline
reuptake
inhibitors

Cf

Negative affect

ACC/MPEC

Insula Insula

<’ SLEA Amygd&'a Amygdala

Serotonin ® Cognitive

| reuptake behavioural
" inhibitors, DBS therapies

Attention Cogpnitive control

msPEC DLPFC DLPFC
LPFC

al al . PCG PCG
alPL
DPC DPC

Precuneus

® (ognitive
training, TMS

Attention
training,
stimulants




Neurocognitive Basis of Cognitive Control
W ' Networks
FPN (fronto-parietal)
' , : .CON (cingulo-opercular)
\ | | | .SAN (salience)
¢ “\ oy DR .DAN (dorsal attention)
mmj e — % lVAN (ventral attention)

(FPN)

/ ' .DMN (default-mode)

otor & somat osensory

Large scale canonical networks. Central role of fronto-parietal (FPN) flexible
hubs in cognitive control and adaptive implementation of task demands (black
lines=correlations significantly above network average). Cole et al. (2013).




Finn et al. (2015), Functional connectome fingerprinting: identifying
individuals using patterns of brain connectivity. Nature Neuroscience.
Top: highly unique; Bottom: highly consistent connections.

S
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Networks only task only




F| u |d nature Connectome Project

Development of brain in infancy: first learning how to move, sensorimotor
activity organizes brain network processes, rather consistent.

The Developing Human Connectome Project: create a dynamic map of human
brain connectivity from 20 to 44 weeks post-conceptional age, which will link
together imaging, clinical, behavioral, and genetic information.

Low-creative network

- ~ Prefrontal

\ Temporal

Cerebellur

) Brainstem
Ny
L R



http://www.developingconnectome.org/

ASD: pathological FC

Comparison of connections for
patients with ASD (autism
spectrum), TSC (Tuberous
Sclerosis), and ASD+TSC.

Coherence between electrodes.
Weak or missing connections
between distant regions prevent
ASD/TSC patients from solving
more demanding cognitive tasks.

Network analysis becomes very
useful for diagnosis of changes
due to the disease and learning;
correct your networks!

TSC with ASD

J.F. Glazebrook, R. Wallace, Pathologies in functional connectivity, feedback
control and robustness. Cogn Process (2015) 16:1-16



Biomarkers from neuroimaging

Data Acquisition
(three sites in Japan)

Tfi‘r’
ASD
(N=74)

fisd

'T
TD

(N=107)

D)

Time course from

Image Preprocessing

each region

‘ Per subject

Correlation matrix
among 140 regions

Feature Selection

Demographic
properties

181 matrices with
diaanostic labels
AUC = 0.57

P=0.65

AUC =0.93
a P=6.7x10"% /_ ASD
//‘
//
AUC = 0.65

b

.

P=0.012

SCZ

AUC =0.48

P=0.83

5
.

MDD

N. Yahata et al, Psychiatry and Clinical Neurosciences 2017: 71

2N

Model for ASD

SLR

L1-SCCA

Models for other covariates

Medication
status

Accuracy



Selected connections

C Superior

a Anterior

Anterior
o
10118]1S0d

Left

Inferior

Posterior
N. Yahata et al (2016): 29 selected regions (ROI) and 16 connections are sufficient
to recognize ASD with 85% accuracy in 74 Japanese adult patients vs. 107 people

in control group; without re-training accuracy was 75% on US patients.



Biomarkers of mental disorders

Functional connectivity-based Recasting current nosology in more
classifiers for mental disorders biologically meaningful dimensions

Normal
(typically-developed)

Each axis represents proneness to
a specific disorder derived from the
corresponding FC-based classifier.

MDD, deep depression, SCZ, schizophrenia, OCD, obsessive-compulsive disorder,
ASD autism spectrum disorder. fMRI biomarkers allow for objective diagnosis.
N. Yahata et al, Psychiatry & Clinical Neurosciences 2017; 71: 215-237




Connectivity in patients vs healthy

Affective lliness without Psychosis

Psychotic lliness

Percent Deviation from Health Percent Deviation from Health

Healthy

O Healthy Comparison O Healthy Comparison
. Non-Treatment Seeking Unipolar Depression o Bipolar Disorder with Psychosis

. Treatment Seeking Unipolar Depression . Schizophrenia and Schizoaffective Disorder (Group 1)
. Schizophrenia (Group 2)

O Bipolar Disorder without Psychosis

Regions determined based on the 17-network solution from Yeo et al.

Control (health) = circle, % deviation in mean network connectivity shown.



Negative connections in MCI patients

MCI patients (ADNI2),
positive and negative
functional connections
in one of the 5 states of
the Deep Auto-Encoder
(DAE) + HMM models
derived from the rs-
fMRI time series.

Connections |W|>0.65.

Accuracy 72.6% with a
sensitivity of 70.6% and
a specificity of 75%.

Suk et al. Neuroimage
(2016)
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Ciric et.al. (2017). Contextual connectivity: A framework for understanding the
intrinsic dynamic architecture of large-scale functional brain networks.
Scientific Reports 7, 6537




DMN time-averaged baseline.
Between-network allegiances (prob.
that nodes are in the same community).
Rim colors = canonical networks, rim
length = greater allegiance to other
networks, size of connections = strength
of between-network allegiances.
DMN1: weak within-network allegiance
strong to DAT, SAL, and VIS.

DMN @SC/CB
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EEG

Brain networks from EEG? Technically difficult. Poor spatial resolution, only outer
cortex, signals from the sensors are misleading, localization is necessery. Removal
of artefacts is only partially automatic, it involves a lot of manual work.
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EEG for Brain Fingerprints

fMRI is too costly, difficult to standardize, to slow to follow dynamics.

fMRI BFP are based on V(X,t) voxel intensity of fMRI BOLD signal changes,
contrasted between task and reference activity or resting state.

EEG: cheaper and better temporal resolution, use spatio-temporal maps, ERP
maps/shapes, coherence, various phase synchronization indices for BFP.

Spatial/Power: direct localization/reconstruction of sources.

EEG microstates, sequences & transitions, dynamics in ROl space.
Spatial/Synch: changes in functional graph network structure.
Frequency/Power: ERS/ERD smoothed patterns E(X,t,f).

ERP global power maps: spatio-temporal averaged energy distributions.
EEG decomposition into components: ICA, CCA, tensor, RP ...

Model-based: The Virtual Brain, integrating EEG/neuroimaging data.

00 N O

Spectral fingerprinting (MEG, EEG), power distributions.

Neuroplastic changes of connectomes and functional connections are
observed as a result of training to optimize brain processes.



Model of reading & dyslexia

Emergent neural simulator:

Aisa, B., Mingus, B., and O'Reilly, R. The
emergent neural modeling system.
Neural Networks, 21, 1045, 2008.

3-layer model of reading:

orthography, phonology, semantics, or
distribution of activity over
140 microfeatures defining concepts.

In the brain: microfeature=subnetwork.
Hidden layers OS/OP/SP_Hid in between. DysiexiaNet Value: act

Phonology

Learning: mapping one of the 3 layers to the other two.
Fluctuations around final configuration = attractors representing concepts.

How to see properties of their basins, their relations?
Model in Genesis: more detailed neuron description.



Computational Models

Models at various level of detail.

Inhibitory
Synaptic

Minimal model includes neurons with
3 types of ion channels.

Models of attention:

Posner spatial attention;

attention shift between visual objects.

Models of word associations:

sequence of spontaneous thoughts.

Models of motor control. ABCE puin. on e e st

Chiloride

Critical: control of the increase in . ionotropicglutamate
intracellular calcium, which builds up hl#i:: \ RHACHRICR R
slowly as a function of activation.

Initial focus on the leak channels,
2-pore K*, looking for genes/proteins.

voltage-gated cation



lon channels

Hundreds of ion channels
have been identified in neurons ...

TRPP

Major challenge for computational
neurosciences: G

MOk O

. - el !LJVLI" .
what happens with the nervous gre L
system when some of them are | -
dysfunctional? i . Jl}
. TRPC [

Leak channels regulate spontaneous s

transitions between attractor states.

=—— 0.05 substitutions/site




Recurrence Plot (flag)

.

|
IIIII

a0 100 150 200 250 300 350 400 450 a00

Transitions to new patterns that share some active units
(microfeatures) shown in recurrence plots.



Viser toolbox

VISER Toolbox HOME FEATURES EXAMPLES DOWNLOAD Doc TEAM CONTACT

E| FSD | POP | MDS || Seqmentation || m&ﬁﬂ

Respiratory Rythm Generator Loréini_ A'I_:it':ré"i_ctor P Orbits swap in Lorenz Dow Jones Stock Index
i Attractor

Cyclic Movements Model Long simulation of Dyslexia Model of Word Reading and Lorenz Attractor

Nasz Viser toolbox (Dobosz, Duch) do wizualizacji szeregdw czasowych w
wielu wymiarach roznymi technikami.



http://fizyka.umk.pl/~kdobosz/visertoolbox/
http://fizyka.umk.pl/~kdobosz/visertoolbox/

Fast transitions

Artivalan in Semsrlas layer [dyeles.prs]

.. D43
04 e s 0 150 o =0 W0 3[04 451 51
e G, W= [0S, . 030 0= 2

Gy p= 0BT, D162, =12

Attention is focused only for a brief time and than moved to the next attractor
basin, some basins are visited for such a short time that no action may follow,

corresponding to the feeling of confusion and not being conscious of fleeting
thoughts.



Trajectory visualization

Recurrence Plat Multidimensi
1800
1600
1400
1200
1000
800
BO0
400
200

200 400 GO0 800 1000

Recurrence plots and MDS/FSD/SNE visualization of trajectories of the brain
activity. Here data from 140-dim semantic layer activity during spontaneous
associations in the 40-words microdomain, starting with the word “flag”.



Depth of attractor basins

Variance around the center of a cluster grows with synaptic noise; for narrow
and deep attractors it will grow slowly, but for wide basins it will grow fast.

It may be used to estimate how strong states are entrapped in basins of
attractors. Jumping out of the attractor basin reduces the variance due to
inhibition of desynchronized neurons.

oize of attractor basins in semantics layer [dyslex. praoj]
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Typical Development vs. Autism

Activation in Semantics layer [dyslex. proj] Activation in Semantics layer [dyslex.praj]

2
2

[0.36741,... 040767, o

[0.36741,... D.40767], o

GS: W
GS: W=
=
=
[}

= o
=
]

I

n= = 043 D43 A _
Gy = [080213,.. 0.11623], o =2 Gy w=[0.067326,...,0.8086], o =2 G, w=[0.80213,.. 0.11623], o=2 (31; W= [0.067326,.. 0.8086], o =2

All plots for the flag word, different values of b_inc_dt parameter in the
accommodation mechanism. b_inc_dt=0.01 & b_inc_dt = 0.005

b_inc_dt = time constant for increases in intracellular calcium building up
slowly as a function of activation, controls voltage-dependent leak channels.

kdobosz.wikidot.com/d
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http://kdobosz.wikidot.com/dyslexia-accommodation-parameters
http://kdobosz.wikidot.com/dyslexia-accommodation-parameters

Typical Development vs ADHD

Activation in Semantics layer [dyslex. proj] Activation in Semantics layer [dyslex. praj]
500

450

400

2
2

F 350

F 300

P 250

[0.36741 ... D.40767], o
[0.36741,... 0.40767], o

F o200

GS: W=

GS: W=
[}
.
i}

150

= o
=
=]

I

100
a0

a

Gyt p=[0.80213,.. 0.11623], o =2 G, 1= [0.067325,.. 0.8066], o = 2 Gyt p=[0.80213,.. 0.11623], o =2 G,: w= [0.067326,... 0.8086], o= 2

All plots for the flag word, different values of b_inc_dt parameter in the
accommodation mechanism. b_inc_dt=0.01 & b_inc_dt =0.02.

b_inc_dt = time constant for increases in intracellular calcium which builds up
slowly as a function of activation.

kdobosz.wikidot.com/dyslexia-accommodation-parameters



http://kdobosz.wikidot.com/dyslexia-accommodation-parameters

Rapid Serial Visual Presentation

sentence

| appear l

Any RSVP applications for fast reading.

Simulation: showing series of words, looking for attention/associations.
star => flea => tent => lock => tart => hind



RSVP: typical brain

Recurrence Plot

Normal speed too fast, speed 5x
associations, context=>understanding microstates get blurred,

Some shallow microstates, no associations few associations



RSVP simulations: HFA

000
-
-
2500 rﬁﬁﬁ_
2000 I
R
1500 ..-
1000 i
v
-

i i |
1 =i == 1
H IR B & '@ &
00 1000 1500 2000 2500 2000

High functioning ASD case (HFA):
normal presentation fast presentation
long dwelling times enforced quick resynchronization
more internal stimuli.



RSVP simulations in deep autism

Normal speed fast presentation
skipping some words, more internal states

no associations some associations arise



Probability of recurrence

Probabiliy of Recurrance (PoR = 0.03E952)

Recumanca Ple ifdag)

1 =D

350 400 450 200

Probability of recurrence may be computed from recurrence plots,
or from clusterization of trajectory points, allowing for evaluation
how strongly some basins of attractors capture neurodynamics.

Our Viser Toolbox is used for all visualizations



http://fizyka.umk.pl/~kdobosz/visertoolbox/
http://fizyka.umk.pl/~kdobosz/visertoolbox/
http://fizyka.umk.pl/~kdobosz/visertoolbox/

Microstates in sensor space

Lehmann et al.

EEG microstate
duration and syntax
in acute, medication-
naive, first-episode
schizophrenia.
Psychiatry Research
Neuroimaging, 2005

Khanna et al.
Microstates in
Resting-State EEG.
Neuroscience and
Biobehavioral
Reviews, 2015

4-7 states 60-150 ms
Symbolic dynamics.

A

A

Schematic

Controls vs, SCZ

A

B B

Controls vs. Null

......... SEDED

SCZ vs. Null

Percent change in microstate duration of

condition vs. control
]

20
104 Fronto-Tempaoral
Dementia
U lll
10 I:m -
L
Panic *
=204 Disorder .f
Schizophrenia 5




Microstates sources

Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the
temporal dynamics of whole-brain neuronal networks: A review. Neurolmage,
180, 577-593. https: '



https://doi.org/10.1016/j.neuroimage.2017.11.062

EEG bands and brain disorders

Differences in absolute power for JRGRSEEY Delta _ Theta  Alpha _ Beta
Depression

each disorder (relative to control) ORI

e Schizophrenia
for eyes closed condition (top), oen
eyes open (middle) and eyes open EESISSURCIEYE]
. ADHD adults
and closed combined (bottom). Bipolar
: . PTSD
White boxes indicate no change, [ _——"
black indicates an increase, and Autism
gray indicates a decrease. EVES|°Pe"
. Bipolar
Hashed boxes - opposing results Depression
(contradictory). ADHD children
ADHD adults
Schizophrenia
Newson & Thiagarajan (2019). Autism
: SV PTSD
EEG Frequency Bands in Psychiatric
Disorders: A Review of Resting Eyes Closed & Open Combined

h . ; Depression No data No data
State Studies. Frontiers in Human  [FSSSanrem EIE
Neuroscience, 12. https:// Addiction-opioids

doi.org/10.3389/fnhum.2018.0052 K R eee W R o R POl
1



https://doi.org/10.3389/fnhum.2018.00521
https://doi.org/10.3389/fnhum.2018.00521
https://doi.org/10.3389/fnhum.2018.00521

Checkerboard reversal, 5 microstates

Stimulus Onset M1
3 -B2,13(BA17)
xy.2 Talairach coordin

M1=>V1
M2 =>V2

M3=>Para-
hippocampal

M4=>BA7, left
PC, precuneus

M5=>dACC

Cacioppo, S., Weiss, R. M., Runesha, H. B., & Cacioppo, J. T. (2014). Dynamic
spatiotemporal brain analyses using high performance electrical neuroimaging:
Theoretical framework and validation. J. of Neuroscience Methods, 238, 11-34.



Plan for action: 8-fold way.

Focus on neurodynamics. Include ion channels and other biophysical
parameters for neurons/networks in your models.

Create simulation of normal functions, ex: attention shifts.

Catalogue all possible changes in biophysical parameters that lead to
specific deregulation of normal behavior, ex: all types of ion channels.

Look for dysfunctional proteins related to biophysical parameters, ex: those
proteins that build ion channels.

Use gene expression atlases to find correlations of proteins with mutations.
Explain diversity of mutations and weak disease signals.

Predict changes in real brain signals: EEG/MEG, neuroimaging, intracranial.

Analyze existing neuroimaging data, functional and anatomical. Perform
new experiments to verify proposed mechanisms leading to dysfunctions.

Propose close-loop therapies. Psychosomatic pain is a good target.



ASD EEG SVM Classification

Predict

Leave-one-out

training set Machine
Learning:

find separating
plane from
training data

Predict

Wavelet decomposition, Recurrent Quantification Analysis,
feature ranking and machine learning. Nonlinear features are critical to
achieve good results, and their correlated with ASD depends on age.



EEG early ASD detection

Bosl, W. J., Tager-Flusberg, H., & Nelson, C. A. (2018). EEG Analytics for Early
Detection of Autism Spectrum Disorder: A data-driven approach. Scientific
Reports, 8(1), 6828.

EEG of 3 to 36-month old babies, 19 electrodes selected from 64 or 128.

Daubechies (DB4) wavelets transform EEG signal into 6 bands.

7 features from Recurrence Quantitative Analysis (RQA): RP entropy, recurrence
rate, laminarity, repetition, max/mean line length, trapping time.

In addition sample entropy and Detrended Fluctuation Analysis was used.

Nonlinear features were computed from EEG signals and used as input to
statistical learning methods. Prediction of the clinical diagnostic outcome of
ASD or not ASD was highly accurate.

SVM classification with 9 features gave high specificity and sensitivity,
exceeding 95% at some ages. Prediction using only EEG data taken as early as 3
months of age was strongly correlated with the actual measured scores.



EEG non-linear features

Features: not only structure, but also dynamics.

Nonlinear invariant measures of a time series and their physical
interpretation, recurrence guantification analysis (RQA).

For example:

Sample Entropy (SampE)

Entropy derived from recurrence plot (L_entr).
Recurrence rate (RR), probability of recurrence.
Determinism (DET), repeating patterns in the system.

Laminarity (LAM), frequency of transitions between states.

O U

Trapping time (TT), time in a given state.


http://www.recurrence-plot.tk/rqa.php
http://www.recurrence-plot.tk/rqa.php
http://www.recurrence-plot.tk/rqa.php
http://www.recurrence-plot.tk/rqa.php
http://www.recurrence-plot.tk/rqa.php
https://en.wikipedia.org/wiki/Sample_entropy
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ASD EEG SVM Classification

Developmental
trajectories for SampeE in
the left temporal region
(T7 sensor) in higher
frequencies
(beta+gamma) for ASD,
LRC-, and HRA-

LRC low risk controls

HRA high risk for ASD
-no ASD




ASD EEG SVM Classification

Right Temporal-Parietal, th-g

Developmental
trajectories for SampkE in
the right temporal-
parietal region

(T8 +P4+P8 sensors) in
frequencies theta
through gamma for ASD,
LRC-, and HRA-.




Functional connectivity changes

Influence of brain games on functional connectivity: Phase Locking Value
(Burgess, 2013; Lachaux 1999), phase differences between signals
measured at each electrode. PLV => synchronization maps, info flow.




EEG localization and reconstruction
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Spatial filters

LCMV (Linearly Constrained Minimum Variance), classical reconstruction filter is a
solution to the following problem:

LCMV has large error if:

e sources are correlated,

* SNR (signal to to noise ratio) is low, or
e forward problem is ill-conditioned.

Minimum variance pseudo-unbiased reduced-rank (MV-PURE, Piotrowski,
Yamada, IEEE Transactions on Signal Processing 56, 3408-3423, 2008)

W = ﬂ arg min

jex WeX,

WK (0) - IIHJ_E

where X is a set of all matrices of rank at most r, and set Y denotes all unitary

norms. We use 15000 vertex FreeSurfer brain tessellation together with brain
atlases that provide parcellation of the mesh elements into 100-240 cortical
patches (regions of interest, ROIs).



SupFunSim

SupFunSim: our library/Matlab /tollbox, direct models for EEG/MEG.

Provides many spatial filters for reconstruction of EEG sources: linearly
constrained minimum-variance (LCMV), eigenspace LCMV, nulling (NL), minimum-
variance pseudo-unbiased reduced-rank (MV-PURE) ...

Source-level directed connectivity analysis: partial directed coherence (PDC),
directed transfer function (DTF) measures.

Works with FieldTrip EEG/ MEG software. Modular, object-oriented, using Jupyter
notes, allowing for comments and equations in LaTex.

A= HS?‘{.T._,R = R_UEH
B = HSrc..‘,N = _LQH

$¢8file calculate H Src.m
function model = calculate H Src(MODEL)
model = MODEL;

model.H Src R pinv(sgrtm(model.R)) * model.H Src;
model.H Src N pinv(sqrtm(model.N)) * model.H Src;
end

Rykaczewski, K., Nikadon, J., Duch, W., & Piotrowski, T. (2019). BioRxiv, 618694



https://www.biorxiv.org/content/10.1101/618694v1
https://www.biorxiv.org/content/10.1101/618694v1
https://www.biorxiv.org/content/10.1101/618694v1

Spectral ﬁngerprmts

Scatter Plot and Fitted Gaussian Mixture Contours

Single
subject

[
d € ROI

€

Precentral Gyrus (left)

N Plctures from Keltel & Gross 2016 and Fieldtrip Group model

A. Keitel i J. Gross, ,,Ind|V|duaI human brain areas can be identified from their
characteristic spectral activation fingerprints”, PLoS Biol 14(6), €1002498, 2016




Spectral fingerprints
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A. Keitel i J. Gross, ,Individual human brain areas can be identified from their

characteristic spectral activation fingerprints”, PLoS Biol 14, e1002498, 2016




Simultaneous EEG/fMRI

g

3

Raw EEG Data

Functional MRI

Anatomical MRI

)

Artifact-free EEG
.'. Global Field Power
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Co-registered and
normalized fMRI

Temporally downsampled EEG
(microstates)

4§ Sourceimaging

EEG Cortical Sources l

& Alignment

Surface Aligned Cortical Sources

$§ Temporal ICA

EEG RSNs )
~rAPN AN AN\
- ..
‘m%‘n‘*’\“‘“\p\ﬁh\f"w"\f

Spatial ICA

( BOLD fMRI RSNs

200 300 (s) /

8

0 100 200 300 (s)

-y
b

Spatial Comparison & Temporal Correlation




14 networks from BOLD-EEG

Data preprocessing

bad-channel reparation filtering ICA denoising re-referencing
J

N

inverse solution

pre-process

J' ICA decomposition

Volume conduction model creation Conneclivity analysi
nnectivity analysis

co-registration

Electrode s L
positions .

forward

solution  Head
—> model

segmentation

Liu et al. Detecting large-scale networks in the human brain. HBM (2017; 2018).




DMN hdEEG DAN hdEEG

DSN hdEEG
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MPN hdEEG

MPN fMRI

t-score

SICA on 10-min fMRI data (N = 24, threshold: p < 0.01, TFCE corrected). DMN,

default mode network; DAN, dorsal attention network; DSN, dorsal somatomotor
network; VEN, visual foveal network; AN, auditory network; MPN, medial prefrontal
network.




EEG-RSN maps obtained using spatial ICA
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Plan for action - lessons from ASD

Focus on neurodynamics. Include ion channels and other biophysical
parameters for neurons/networks.

Create simulation of normal functions, ex: attention shifts.

Catalogue all possible changes in biophysical parameters that lead to
specific deregulation of normal behavior, ex: all types of ion channels.

Look for dysfunctional proteins related to biophysical parameters, ex: those
proteins that build ion channels.

Use gene expression atlases to find correlations of proteins with mutations.
Explain diversity of mutations and weak disease signals.

Predict changes in real brain signals: EEG/MEG, neuroimaging, intracranial.

Analyze existing neuroimaging data, functional and anatomical. Perform
new experiments to verify proposed mechanisms leading to dysfunctions.

Propose close-loop therapies. Psychosomatic pain is a good target.



Perspectives

Many brain states are now linked to specific mental states,
and can be transformed into signals that we can understand:
motor intentions, plans, images, inner voices ...

Some large-scale functional networks have reasonable (although still not
perfect) interpretation, for example sensory networks, dorsal and ventral
attention networks, executive control, motor networks.

Individual differences and many psychological functions are directly linked to
connectome and functional networks, including multistable properties.

Al/ML draws inspirations from brain research, but also neural network
models and learning algorithms (CNN, recurrence networks, reinforcement
learning) help to interpret information processing in the brain.

Many neurocognitive technologies are coming, helping to diagnose, repair
and optimize brain processes.



In search of the sources
of brain's cognitive activity

Project ,,Symfonia”, 2016-21

¥ WA CENTRE FOR MODERN ﬂl.‘"j'lLﬂ_“l__"ﬂ INSTITUTE OF PHYSIOLOGY ki
INTERDISCIPLINARY
WSS EcHnoLoGies |f.|m1. TJ AND PATHOLOGY OF HEARING /\ Denckl institute

of experimental biology



My group of neuro-cog-fanatics




Neuro

qncf | Informatics 2019

Warsaw, Poland | September 1-2

Join the global INCF community for

keynates | panel discussions | posters | demos | socials

Speakers

Jan Bjaalie, University of Oslo

Rafal Bogacz, University of Oxford

Andrzej Cichocki, RIKEN CBS

Maureen Clere, lnria

Carole Goble, University of Manchester

William Grisham, UCLA

Michael Hawrylycz, Aflen Institute for Brain Science
Henry Kennedy, /NSERM

Naomi Penfold, ASAPbio

Ariel Rokem, University of Washington

Frances Skinner, University of Taronto

Pedro Valdes-Sosa, (uban Neuroscience Center,
University of Electronic Science and Technology China
Kirstie Whitaker, University of (ambridge
Alexander Woodward, RIKEN (BS

Jaroslaw Zygierewicz, University of Warsaw

Session themes

« Global brain projects:
infrastructure interoperability and sustainability

- Data management and workflows in neuroscience
» Future of academic publishing

- Comparative and predictive connectomics

« Brain Computer Interface (BCl)

« Meuroinformatics challenges in behavioral studies
» Building open science communities
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of your neurons

Google: W. Duch
=> talks, papers, lectures, Flipboard ...
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